If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2-3z=0
a = 3; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·3·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*3}=\frac{0}{6} =0 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*3}=\frac{6}{6} =1 $
| 6x^2-12x-9=28 | | 6x-4=6-x | | 2x-6=104 | | b÷5=0.5 | | (X+3)15=2x(12) | | x^2+16x+24-6x=0 | | 5m^2=8m+13 | | 4x+2(x-3)+5=23 | | 4(-6x-7)=4x+10-2(1+x) | | 2x+2=3x+8/9 | | 2+1=1x7 | | 4x^2+8x+16=216 | | -6(2/3x-10)=20-1/5x-3) | | 2x-3(2x-3)=25 | | 2(4x+7)+2=80 | | 3(u-2)+5=2(3u-5 | | n/20=-3 | | 4a^2-15=-11 | | 3/4w-44=-2w | | 14-2m=5m-14 | | 2/3x=5/3 | | g÷2=3.4 | | 40÷n–7=1 | | Y+5y+9y=180 | | 17y+8-7y=58 | | y=(-3/2) | | 5p^2-12p-7=2 | | -2(y-30)=-6y | | -2(y-30=-6y | | 8(x+15)=8x+15 | | 2(x-4)^2+41=12 | | (2x+1)/3=(x+5)/2 |